An Improved Sum–Product Inequality in Fields of Prime Order

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Garaev’s inequality in Finite Fields not of prime order

In the present paper, we extend Garaev’s techniques to the set of fields which are not necessarily of prime order. Our goal here is just to find an explicit estimate in the supercritical setting where the set A has less cardinality than the square root of the cardinality of the field, and interacts in a less than half-dimensional way with any subfields. (We make this precise below.) Precisely, ...

متن کامل

Slightly Improved Sum-product Estimates in Fields of Prime Order

Let Fp be the field of residue classes modulo a prime number p and let A be a nonempty subset of Fp. In this paper we show that if |A| p , then max{|A ± A|, |AA|} |A|; if |A| p, then max{|A ± A|, |AA|} v min{|A|( |A| p0.5 ), |A|( p |A| )}. These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on different sets are also considered.

متن کامل

On Product Sets in Fields of Prime Order and an Application of Burgess’ Inequality

This is the origin of paper ‘On a Question of Davenport and Lewis on Character Sums and Primitive Roots in Finite Fields’. There is still a little to be typed. Abstract Let A ⊂ Fp with |A| > p and |A + A| < C0|A|. We give explicit constants k = k(C0, ε) and κ = κ(C0, ε) such that |Ak| > κp. The tools we use are Garaev’s sum-product estimate, Freiman’s Theorem and a variant of Burgess’ method. A...

متن کامل

Improved Modular Multiplication for Optimal Prime Fields

Optimal Prime Fields (OPFs) are considered to be one of the best choices for lightweight elliptic curve cryptography implementation on resource-constraint embedded processors. In this paper, we revisit efficient implementation of the modular arithmetic over the special prime fields, and present improved implementation of modular multiplication for OPFs, called Optimal Prime Field Coarsely Integ...

متن کامل

An inequality between prime powers dividing n !

For any positive integer n 2: 1 and for any prime number p let ep(n) be the exponent at which the prime p appears in the prime factor decomposition of nL In this note we prove the following; Theorem. Let p < q be two prime numbers, and let n > 1 be a positive integer such that pq I n. Then, (1) Inequality (1) was suggested by Balacenoiu at the First International Conference on Smarandache ::\ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2011

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rnr158